Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Liang-Zhong Xu,* Guan-Ping Yu, Yong-Wei Huang, Guo-Dong Si and Kai Li

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: qknhs@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.116$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(4-Phenyl-3-thioxo-1,2,4-triazolidin-1-yl)-2-(1H-1,2,4-triazol-1-yl)ethanone

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{OS}$, the dihedral angles made by the plane of the thione-substituted triazolidine ring with the planes of the triazole ring and the benzene ring are 87.77 (2) and $52.07(3)^{\circ}$, respectively. In the crystal structure, weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds stabilize the packing.

Comment

Research findings indicate that the 1,2,4-triazole ring is associated with diverse pharmacological activities, such as analgesic, anti-asthmatic, diuretic, antifungal, antibacterial, pesticidal and anti-inflammatory activities (Bennur et al., 1976; Heubach et al., 1980; Sharma \& Babel, 1982; Mohamed et al., 1993). In view of this, the crystal structure determination of the title compound, (I), has been carried out in order to elucidate the stereochemistry and the molecular conformation.

(I)

Bond lengths and angles of the triazole ring (Table 1) are in agreement with the values in our previous report of a similar structure (Xu et al., 2005). The $\mathrm{C}=\mathrm{S}$ distance is essentially the same as the mean value of $1.660 \AA$ reported by Allen et al. (1987). The dihedral angles made by the plane of the thionesubstituted triazolidine ring ($\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{N} 1-\mathrm{N} 3 / \mathrm{S} 1$) with the planes of the triazole ring ($\mathrm{C} 11 / \mathrm{C} 12 / \mathrm{N} 4-\mathrm{N} 6)$ and the benzene ring (C3-C8) are 87.77 (2) and 52.07 (3) $)^{\circ}$, respectively. In the crystal structure weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen-bond interactions stabilize the packing (Table 2).

View of the title compound, (I), with displacement ellipsoids drawn at the 40% probability level.

Received 12 September 2005 Accepted 20 September 2005 Online 24 September 2005

Experimental

A mixture of 5-[(1H-1,2,4-triazol-1-yl)methyl]-1,3,4-oxadiazole-2thiol $(0.02 \mathrm{~mol})$, aniline $(0.02 \mathrm{~mol})$ and formaldehyde $(0.02 \mathrm{~mol})$ was stirred in ethanol $(30 \mathrm{ml})$ for 15 h at 278 K to afford the title compound (2.62 g , yield 91%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{OS}$
$M_{r}=288.34$
Monoclinic, $P 2_{1} / c$
$a=9.7112$ (19) \AA
$b=13.589$ (3) \AA
$c=10.711$ (2) \AA
$\beta=107.362$ (4) ${ }^{\circ}$
$V=1349.0(5) \AA^{3}$
$Z=4$
$D_{x}=1.420 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1493
reflections
$\theta=2.5-22.4^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.22 \times 0.18 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.942, T_{\text {max }}=0.966$
7473 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.116$
$S=1.00$
2748 reflections
185 parameters

Table 1
Selected interatomic distances (\AA).

S1-C1	$1.661(2)$	N4-N5	$1.355(3)$
N1-C1	$1.369(3)$	N5-C12	$1.312(3)$
N1-N2	$1.425(3)$	N6-C11	$1.313(3)$
N4-C11	$1.318(3)$	N6-C12	$1.349(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.83(3)$	$2.16(3)$	$2.962(3)$	$160(3)$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{~N}^{\mathrm{ii}}$	0.97	2.61	$3.138(3)$	115
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} \cdots 1^{\mathrm{iii}}$	0.93	2.54	$3.288(4)$	138
${\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{iv}}}^{\mathrm{iv}}$	0.93	2.28	$2.978(3)$	132

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+2,-y+1,-z+1$; (iii)
$-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Figure 2
A packing diagram of the title compound, viewed along the a axis. Weak hydrogen bonds are shown as dashed lines.

All H atoms were placed in calculated positions. H atoms bonded to C atoms were constrained to ride on their parent atom $(\mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA$), with $U_{\text {iso }}$ values of $1.2 U_{\text {eq }}(\mathrm{C})$. The position and isotropic displacement parameter of the N -bound H atom were refined freely.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.

Bennur, S. C., Jigajinni, V. B. \& Badiger, V. V. (1976). Rev. Roum. Chim. 21, 757-762; Chem. Abstr. 85, 94306j.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Heubach, G., Sachse, B. \& Buerstell, H. (1980). US Patent No. 4239 525; Chem. Abstr. 92, 181200h.
Mohamed, E. A., El-Deen, I. M., Ismail, M. M. \& Mohamed, S. M. (1993). Indian J. Chem. Sect B, 32, 933-937.
Sharma, R. S. \& Babel, S. C. (1982). J. Indian Chem. Soc. 59, 877-880.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, L.-Z., Yu, G.-P., Xu, F.-L. \& Li, W.-H. Acta Cryst. (2005). E61, o2061o2062.

